Skip to the content.

ISPD24 Contest: GPU/ML-Enhanced Large Scale Global Routing

profile

Contest Introduction

Global routing is a critical component of the VLSI design process, exerting a substantial influence on circuit timing, power consumption, and overall routability. The efficiency of global routing is of paramount importance, as a swift and scalable approach can guide optimizations in early design stages like floor-planning and placement.

Over the past decade, GPU accelerated computing platforms have been evolving into highly versatile and programmable systems capable of delivering immense parallel computing power. Recent studies have successfully leveraged GPUs to achieve over a 10x acceleration in global routing without compromising performance. Furthermore, machine learning (ML) techniques have been integrated into the global routing process, leading to enhanced routing solution quality.

The goal of this competition is to stimulate academic research aimed at developing a GPU/ML-enhanced global router tailored for industrial-level circuits. Notably, contemporary VLSI circuits often encompass tens of millions of cells, which is a significant departure from past global routing competitions that typically dealt with scenarios involving no more than 1 million cells. Due to the limitations of current routers, hierarchical or partitioning-based methods are commonly employed to manage large circuits, albeit at the risk of sacrificing a certain degree of optimality. It is of great importance to develop a scalable global router capable of handling circuits with tens of millions of cells, as it can greatly inform optimizations in the early design stages, such as floor-planning and placement. By fostering enthusiasm and innovation within the global routing research community, this competition aims to deliver substantial reductions in global routing runtime for these expansive industrial-grade circuits, harnessing the computational power of GPUs and the potential of machine learning techniques. Simultaneously, it strives to enhance the overall quality of routing results.

Input/Output Formats and Evaluation

To enable teams from diverse backgrounds to participate, we have extracted routing resource information and netlist data from LEF and DEF files and organized them in simplified formats. Consequently, participants can approach the contest as a mathematical optimization problem within the GCell grid graph. The desired outcome is global routing solutions described within the GCell grid graph. The evaluation process is centered on several key metrics, including total wirelength, via count and routing congestion of the global routing solution, as well as the execution runtime of the global router.

Please check Introduction of the contest for more details.

Submission Guidance

Teams are required to build a Docker image on top of the provided Dockerfile. Within the Docker environment, please create a directory named “router” under the “/workspace” folder and place the global router binary/scripts in this directory (/workspace/router). We expect that the global route can accept the following command line:

./route -cap $data.cap -net $data.net -output $data.output

During the evaluation process, the Docker images will be pulled and executed on a NVIDIA platform equipped with 4 NVIDIA A100 GPUs. Specifically, we will mount a “benchmarks” folder (containing the input files) to /workspace/benchmarks and an “evaluation” folder (containing the evaluation scripts) to /workspace/evaluation. The evaluation.sh script will be executed to run the submitted global router and evaluate the generated solutions.

Please kindly archive your Docker image to a tar file (refer to https://docs.docker.com/engine/reference/commandline/save/). Subsequently, upload the tar archive to Google Drive and share the link with us. Please grant access to the Docker image for anyone with the link. The global router binary/scripts are expected to be stored in /workspace/router within the Docker image. Therefore, there is no need to upload the global router binary/scripts separately. If you have any questions regarding this, please feel free to ask. Thank you!

Routing resource limit:

Leaderboard

design runtime /s WL cost via cost overflow cost raw score scaled score
Ariane133_51 12 9285586 2956924 209162 * 50 22700610 22599641.13
Ariane133_68 13 9435932 2883456 158823 * 50 20260538 20176881.88
BlackParrot 120 58702634 20208976 728858 * 50 115354510 115354510
MemPool-Tile 12 8484366 3501412 70477 * 50 15509628 15548566.75
MemPool-Group 362 271521737 94674144 1778913 * 50 455141531 448353488.1
MemPool-Cluster 14327 1103106843 285442676 5801104 * 50 1678604719 1752964443
design WL cost via cost overflow cost raw score runtime /s median runtime /s scaled score
Ariane133_51 9335109 3060400 10369862 22765372 4 11 22100882
Ariane133_68 9443754 2981836 7825647 20251238 8 12 20014313
BlackParrot 58347098 19740536 35450029 113537664 27 70.5 110393434
Nvdla 21345766 4630872 23933347 49909986 4 20 47592238
MemPool-Tile 8407884 3425828 3569040 15402753 3 10 14867672
MemPool-Group 262817992 76146200 70345580 409309772 81 375 391210938
MemPool-Cluster 1094650057 268335040 300359611 1663344708 478 2048 1593513066
Tera-Cluster 12190406272 1542639724 6705414754 20438460750 4310 4584 20402113329
design WL cost via cost overflow cost raw score runtime /s median runtime /s scaled score
Ariane_rank 11931752.82 2906688 7764435.24 22602876.06 6.238 9.535 22326149.32
BlackParrot_rank 55573070.65 19738252 37798297.79 113109620.4 16.551 34.3625 110725458.3
Nvdla_rank 21472300.92 4661336 17062342.24 43195979.16 7.504 10.432 42785371.97
MemPool-Tile_rank 7541038.845 3346788 2939315.209 13827142.05 5.093 5.3315 13808883.1
MemPool-Group_rank 247299729.1 73566828 62771095.09 383637652.2 45.455 144.5285 370833031.1
MemPool-Cluster_rank 1185865082 282548572 313778179.9 1782191834 217.099 765.475 1717391261
Tera-Cluster_rank 7963801630 1690296724 2867829285 12521927639 1940.183 7716.82 12023100694
design WL cost via cost overflow cost raw score runtime /s median runtime /s scaled score
Ariane_rank 12051686.81 2959392 8082422.507 23093501.32 2.234 9.535 22126528.5
BlackParrot_rank 55847570.15 19505444 35633766.41 110986780.6 9.573 34.3625 106894049.8
Nvdla_rank 21840287.42 4586500 17714764.37 44141551.79 3.295 10.432 42673699.17
MemPool-Tile_rank 7601380.712 3308184 3223704.168 14133268.88 2.085 5.3315 13750400.29
MemPool-Group_rank 250445949.5 74362960 70679949.95 395488859.5 27.603 144.5285 376596696.5
MemPool-Cluster_rank 1190412465 274145704 359968884.8 1824527054 124.417 765.475 1728879082
Tera-Cluster_rank 8039402094 1488566820 3148098101 12676067016 1352.127 7716.82 12039024729
design WL cost via cost overflow cost raw score runtime /s median runtime /s scaled score
Ariane_rank 12021241.28 2813744 7986303.865 22821289.14 1.443 9.535 21577911.53
BlackParrot_rank 55751772.56 19182208 36844605.46 111778586 8.689 34.3625 107344166.4
Nvdla_rank 21693203.41 4455428 17146460.17 43295091.59 4.102 10.432 42129054
MemPool-Tile_rank 7578562.281 3233024 3055538.132 13867124.41 1.057 5.3315 13219650.04
MemPool-Group_rank 249498393.4 70274012 68427932.19 388200337.6 22.408 144.5285 367320841
MemPool-Cluster_rank 1189656494 270441852 335426594.9 1795524941 275.123 765.475 1742511044
Tera-Cluster_rank 7970278976 1442567228 3184651822 12597498026 1862.479 7716.82 12080803508
design WL cost via cost overflow cost raw score runtime /s median runtime /s scaled score
Ariane_rank 12051686.81 2959392 8082422.507 23093501.32 2.234 7.535 21068226.28
BlackParrot_rank 55847570.15 19505444 35633766.41 110986780.6 9.573 34.3625 100754953.7
Nvdla_rank 21840287.42 4586500 17714764.37 44141551.79 3.295 10.216 40538541.63
MemPool-Tile_rank 7601380.712 3308184 3223704.168 14133268.88 2.085 5.015 13238489.99
MemPool-Group_rank 250445949.5 74362960 70679949.95 395488859.5 27.603 121.879 353121075.5
MemPool-Cluster_rank 1190412465 274145704 359968884.8 1824527054 124.417 712.241 1594893733
Tera-Cluster_rank 8039402094 1488566820 3148098101 12676067016 1352.127 5331.15 11421633213
design WL cost via cost overflow cost raw score runtime /s median runtime /s scaled score
Ariane_rank 12021241.28 2813744 7986303.865 22821289.14 1.443 7.535 20100379.62
BlackParrot_rank 55751772.56 19182208 36844605.46 111778586 8.689 34.3625 100692537.1
Nvdla_rank 21693203.41 4455428 17146460.17 43295091.59 4.102 10.216 40445341.48
MemPool-Tile_rank 7578562.281 3233024 3055538.132 13867124.41 1.057 5.015 12309656.14
MemPool-Group_rank 249498393.4 70274012 68427932.19 388200337.6 22.408 121.879 340774605.5
MemPool-Cluster_rank 1189656494 270441852 335426594.9 1795524941 275.123 712.241 1672326009
Tera-Cluster_rank 7970278976 1442567228 3184651822 12597498026 1862.479 5331.15 11641837581
design WL cost via cost overflow cost raw score runtime /s median runtime /s scaled score
Ariane_rank 11932251.5 2908680 7769574.844 22610506.35 2.554 7.535 20845927.05
BlackParrot_rank 55573957.76 19763752 40253224.51 115590934.3 12.84 34.3625 107382881
Nvdla_rank 21469380.39 4696756 17389649.52 43555785.91 4.07 10.216 40664270.31
MemPool-Tile_rank 7541380.951 3347328 2937890.503 13826599.45 1.85 5.015 12831966.13
MemPool-Group_rank 247335596.2 73607632 62785396.86 383728625 40.457 121.879 353203237
MemPool-Cluster_rank 1185834292 283015216 315719710.8 1784569219 225.836 712.241 1636709628
Tera-Cluster_rank 7963550667 1695387868 2886683697 12545622231 2022.139 5331.15 11668329071

Anouncement

Registration

Important Dates

Downloads

Q&A

Contact

Contest Prizes

profile